Interpretability of Multivariate Brain Maps in Brain Decoding: Definition and Quantification

نویسنده

  • Seyed Mostafa Kia
چکیده

Brain decoding is a popular multivariate approach for hypothesis testing in neuroimaging. Linear classifiers are widely employed in the brain decoding paradigm to discriminate among experimental conditions. Then, the derived linear weights are visualized in the form of multivariate brain maps to further study the spatio-temporal patterns of underlying neural activities. It is well known that the brain maps derived from weights of linear classifiers are hard to interpret because of high correlations between predictors, low signal to noise ratios, and the high dimensionality of neuroimaging data. Therefore, improving the interpretability of brain decoding approaches is of primary interest in many neuroimaging studies. Despite extensive studies of this type, at present, there is no formal definition for interpretability of multivariate brain maps. As a consequence, there is no quantitative measure for evaluating the interpretability of different brain decoding methods. In this paper, first, we present a theoretical definition of interpretability in brain decoding; we show that the interpretability of multivariate brain maps can be decomposed into their reproducibility and representativeness. Second, as an application of the proposed theoretical definition, we formalize a heuristic method for approximating the interpretability of multivariate brain maps in a binary magnetoencephalography (MEG) decoding scenario. Third, we propose to combine the approximated interpretability and the performance of the brain decoding model into a new multi-objective criterion for model selection. Our results for the MEG data show that optimizing the hyper∗Corresponding author: Email address: [email protected] (Seyed Mostafa Kia ) 1University of Trento, Trento, Italy 2Fondazione Bruno Kessler (FBK), Trento, Italy 3Centro Interdipartimentale Mente e Cervello (CIMeC), Trento, Italy Preprint submitted to arXiv March 30, 2016 ar X iv :1 60 3. 08 70 4v 1 [ st at .M L ] 2 9 M ar 2 01 6 parameters of the regularized linear classifier based on the proposed criterion results in more informative multivariate brain maps. More importantly, the presented definition provides the theoretical background for quantitative evaluation of interpretability, and hence, facilitates the development of more effective brain decoding algorithms in the future.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interpretability of Multivariate Brain Maps in Linear Brain Decoding: Definition, and Heuristic Quantification in Multivariate Analysis of MEG Time-Locked Effects

Brain decoding is a popular multivariate approach for hypothesis testing in neuroimaging. Linear classifiers are widely employed in the brain decoding paradigm to discriminate among experimental conditions. Then, the derived linear weights are visualized in the form of multivariate brain maps to further study spatio-temporal patterns of underlying neural activities. It is well known that the br...

متن کامل

Brain Decoding for Brain Mapping: Definition, Heuristic Quantification, and Improvement of Interpretability in Group MEG Decoding

In the last century, a huge multi–disciplinary scientific endeavor is devoted to answer the historical questions in understanding the brain functions. Among the statistical methods used for this purpose, brain decoding provides a tool to predict the mental state of a human subject based on the recorded brain signal. Brain decoding is widely applied in the contexts of brain–computer interfacing,...

متن کامل

Multi-Task Learning for Interpretation of Brain Decoding Models

Improving the interpretability of multivariate models is of primary interest for many neuroimaging studies. In this study, we present an application of multi-task learning (MTL) to enhance the interpretability of linear classifiers once applied to neuroimaging data. To attain our goal, we propose to divide the data into spatial fractions and define the temporal data of each spatial unit as a ta...

متن کامل

Comparison of Two Quantitative Susceptibility Mapping Measurement Methods Used For Anatomical Localization of the Iron-Incorporated Deep Brain Nuclei

Introduction Quantitative susceptibility mapping (QSM) is a new contrast mechanism in magnetic resonance imaging (MRI). The images produced by the QSM enable researchers and clinicians to easily localize specific structures of the brain, such as deep brain nuclei. These nuclei are targets in many clinical applications and therefore their easy localization is a must. In this study, we aimed to i...

متن کامل

Fast Bootstrapping and Permutation Testing for Assessing Reproducibility and Interpretability of Multivariate fMRI Decoding Models

Multivariate decoding models are increasingly being applied to functional magnetic imaging (fMRI) data to interpret the distributed neural activity in the human brain. These models are typically formulated to optimize an objective function that maximizes decoding accuracy. For decoding models trained on full-brain data, this can result in multiple models that yield the same classification accur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1603.08704  شماره 

صفحات  -

تاریخ انتشار 2016